Using some artificial intelligence algorithms to estimate the parametric regression function for spatially dependent data of water pollution of the Euphrates River

Authors

  • Ons Edin Musa College of Physical Education and Sports Science, Mustansiriyah university, Baghdad, Iraq
  • Sabah Manfi Redha Department of Statistics College of Administration and Economics University of Baghdad, Baghdad, Iraq.

DOI:

https://doi.org/10.33095/8mjedd16

Keywords:

Artificial intelligence, Genetic algorithm, Tabu search algorithm, Binary Firefly algorithm, spatially dependent data, Euphrates Riner water pollution.

Abstract

These models account for the spatial effects resulting from the proximity of events. A compromise exists in the mathematical accuracy of model parameters when spatial correlations are present in the data of the phenomenon. Data reliant on spatial correlations are crucial in statistical modelling, especially in environmental science, economics, epidemiology, and various other disciplines.

This study employs and compares three artificial intelligence approaches—the genetic algorithm (GA), the TABU search algorithm (TSA), and the binary firefly algorithm (Binary FFA)—to determine which is the most efficient for estimating the parametric regression function for spatially dependent data.

The Mean Absolute Percentage Error numbers derived from the simulation demonstrated that the Binary FFA method yielded the most accurate estimations. This illustrates the superiority of the algorithm compared to conventional methods, as well as Genetic Algorithms (GA) and Tabu Search Algorithms (TSA), in environmental assessments (particularly, water pollution in the Euphrates River) and the estimation of regression models for geographically dependent data.

The regression parameter analysis for spatially dependent environmental data about Euphrates River pollution indicates that the temperature variablity exerted little influence on total dissolved salts. Conversely, the variables calcium (Ca), magnesium (Mg), and potassium (K) exhibited a significant and advantageous influence on total dissolved salts. In contrast, the variable sodium (Na) displayed a distinctly detrimental effect simultaneously.

Downloads

Download data is not yet available.

Author Biography

  • Ons Edin Musa , College of Physical Education and Sports Science, Mustansiriyah university, Baghdad, Iraq
    PhD Lecturer

    Mustansiriyah university

    College of Physical Education and Sports Science

     

References

Abdel Hadia, A. T., & Redha, S. M. (2020). Estimate The Survival Function by Using the Genetic Algorithm. Journal of Economics and Administrative Sciences, 26(122), 440–454. https://doi.org/10.33095/jeas.v26i122.2018

Algamal, Z. (2019). Variable Selection in Count Data Regression Model based on Firefly Algorithm. Statistics, Optimization & Information Computing, 7(2). https://doi.org/10.19139/soic.v7i2.566

Al-Tamimi, S. A. S. (n.d.). Compared Study to Some of The Application Practical With (Data Panel) for Model Spatial Dynamic the Estimating of Methods. [Doctoral dissertation, Mustansiriyah university].

Anselin, L. (1988). Spatial Econometrics: Methods and Models (Vol. 4). Springer Netherlands. https://doi.org/10.1007/978-94-015-7799-1

Carr, J. (2014). An introduction to genetic algorithms. Computers & Mathematics with Applications, 32(6), 133. https://doi.org/10.1016/S0898-1221(96)90227-8

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

Dawood, J. M. (2012). Foundations of spatial analysis. 59–80.

Dubin, R. A. (1988). Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms. The Review of Economics and Statistics, 70(3), 466. https://doi.org/10.2307/1926785

Duczmal, L., Cançado, A. L. F., Takahashi, R. H. C., & Bessegato, L. F. (2007). A genetic algorithm for irregularly shaped spatial scan statistics. Computational Statistics & Data Analysis, 52(1), 43–52. https://doi.org/10.1016/j.csda.2007.01.016

Eleas, A. K., & Aboudi, E. H. (2024). Expectation Parameters in the Poisson Mixture Regression Model for Latent Class by Applying Genetic Algorithm and Maximization Algorithm. Journal of Economics and Administrative Sciences, 30(140), 434–449. https://doi.org/10.33095/jeas.v26i122.2018

Ezugwu, A. E.-S., Agbaje, M. B., Aljojo, N., Els, R., Chiroma, H., & Elaziz, M. A. (2020). A Comparative Performance Study of Hybrid Firefly Algorithms for Automatic Data Clustering. IEEE Access, 8, 121089–121118. https://doi.org/10.1109/ACCESS.2020.3006173

Glover F, & Laguna M. (1998). Tabu search. Springer US.

Glover F, Laguna M, & Marti R. (2007). Principles of Tabu Search. Approximation Algorithms and Metaheuristics., 23(1), 1–12.

Hassanien, A. E., & Emary, E. (2018). Swarm Intelligence. CRC Press. https://doi.org/10.1201/9781315222455

He, Z., Shen, X., Zhou, Y., & Wang, Y. (2024). Application of K-means clustering based on artificial intelligence in gene statistics of biological information engineering. Proceedings of the 2024 4th International Conference on Bioinformatics and Intelligent Computing, 468–473. https://doi.org/10.1145/3665689.3665767

Hertz, A., Taillard, E., & De Werra, D. (1995). A Tutorial on Tabu Search.

Hoshino, T. (2018). Semiparametric Spatial Autoregressive Models with Endogenous Regressors: With an Application to Crime Data. Journal of Business & Economic Statistics, 36(1), 160–172. https://doi.org/10.1080/07350015.2016.1146145

Kelejian, H. H., & Prucha, I. R. (1998). A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances. The Journal of Real Estate Finance and Economics, 17(1), 99–121. https://doi.org/10.1023/A:1007707430416

LeSage, J. P. (2015). “Theory and Practice of Spatial Econometrics.” Spatial Economic Analysis, 10(3), 400–400. https://doi.org/10.1080/17421772.2015.1062285

Martins-Filho, C., & Yao, F. (2009). Nonparametric regression estimation with general parametric error covariance. Journal of Multivariate Analysis, 100(3), 309–333. https://doi.org/10.1016/j.jmva.2008.04.013

Matazi, A. K., Gognet, E. E., & Kakaï, R. G. (2024). Digital soil mapping: a predictive performance assessment of spatial linear regression, Bayesian and ML-based models. Modeling Earth Systems and Environment, 10(1), 595–618. https://doi.org/10.1007/s40808-023-01788-1

Musa, O. E., & Ridha, S. M. (2023). Using the artificial TABU algorithm to estimate the semi-parametric regression function with measurement errors. 040037.

https://doi.org/10.1063/5.0126025

Ons Edin Musa, & Sabah Manfi Ridha. (2022). Semi-parametric regression function estimation for environmental pollution with measurement error using artificial flower pollination algorithm. International Journal of Nonlinear Analysis and Applications., 13(1), 1375–1389.

Piniganti L. (n.d.). A Survey of Tabu Search in Combinatorial Optimization. UNLV Theses, Dissertations, Professional Papers, and Capstones. 2132.

http://dx.doi.org/10.34917/5836151

Reeves, C. R. (2010). Genetic algorithms. In Handbook of metaheuristics (pp. 109-139). Springer, Boston, MA.

Safe, M., Carballido, J., Ponzoni, I., & Brignole, N. (2004). On Stopping Criteria for Genetic Algorithms (pp. 405–413). https://doi.org/10.1007/978-3-540-28645-5_41

Sainsbury-Dale, M., Zammit-Mangion, A., Richards, J., & Huser, R. (2025). Neural Bayes Estimators for Irregular Spatial Data Using Graph Neural Networks. Journal of Computational and Graphical Statistics, 1–16.

https://doi.org/10.1080/10618600.2024.2433671

Sivanandam SN, D. S. S. S. D. S. (2008). Introduction to Genetic Algorithms. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73190-0

Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp. 169-178). Berlin, Heidelberg: Springer.

https://doi.org/10.1007/978-3-642-04944-6_14

Yang XS. (2010). Nature-inspired metaheuristic algorithms. Luniver press.

Younis, A., Belabbes, F., Cotfas, P. A., & Cotfas, D. T. (2024). Utilizing the Honeybees Mating-Inspired Firefly Algorithm to Extract Parameters of the Wind Speed Weibull Model. Forecasting, 6(2), 357–377. https://doi.org/10.3390/forecast6020020

Published

2025-10-01

Issue

Section

Statistical Researches

How to Cite

Edin Musa , O. and Manfi Redha , S. (2025) “Using some artificial intelligence algorithms to estimate the parametric regression function for spatially dependent data of water pollution of the Euphrates River”, Journal of Economics and Administrative Sciences, 31(149), pp. 58–72. doi:10.33095/8mjedd16.

Similar Articles

11-20 of 1257

You may also start an advanced similarity search for this article.