مقارنة بين طريقة المربعات الصغرى الجزئية وخوارزمية تجزئة القيم المفردة لتقدير معلمات أنموذج الانحدار اللوجستي في حالة وجود مشكلة التعدد الخطي بأستعمال المحاكاةg
DOI:
https://doi.org/10.33095/jeas.v24i109.1559الكلمات المفتاحية:
Logistic regression, binary data, partial least square, algorithm singular value decomposition, multicollinearity.الملخص
يعد أنموذج الانحدار اللوجستي من النماذج الاحصائية المهمة حيث يوضح العلاقة بين المتغير التابع ثنائي الاستجابة والمتغيرات التوضيحية (التفسيرية).
أن العدد الكبير لمتغيرات توضيحية تستعمل عادة لتوضيح الاستجابة ادى الى ظهور مشكلة التعدد الخطي(Multicollinearity) بين المتغيرات التوضيحية التي تجعل تقدير معلمات النموذج ليست دقيقة.
تم في هذا البحث استعمال طرائق لتقدير معلمات أنموذج الانحدار اللوجستي في حالة وجود مشكلة التعدد الخطي وهذه الطرائق هي طريقة انحدار المربعات الصغرى الجزئية(PLSR) و خوارزمية تجزئة القيم المفردة(SVD), اذ تم استخدام اسلوب المحاكاة للمقارنة بين طرائق التقدير من خلال متوسط مربعات الخطأ(MSE) للأنموذج.
واتضح من خلال المقارنة أن خوارزمية تجزئة القيم المفردة (SVD) هي الافضل في تقدير معلمات أنموذج الانحدار اللوجستي في حالة وجود مشكلة التعدد الخطي.
التنزيلات
منشور
إصدار
القسم
الرخصة
Articles submitted to the journal should not have been published before in their current or substantially similar form or be under consideration for publication with another journal. Please see JEAS originality guidelines for details. Use this in conjunction with the points below about references, before submission i.e. always attribute clearly using either indented text or quote marks as well as making use of the preferred Harvard style of formatting. Authors submitting articles for publication warrant that the work is not an infringement of any existing copyright and will indemnify the publisher against any breach of such warranty. For ease of dissemination and to ensure proper policing of use, papers and contributions become the legal copyright of the publisher unless otherwise agreed.
The editor may make use of Turtitin software for checking the originality of submissions received.



















